Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization

نویسندگان

  • Laurent Sorber
  • Marc Van Barel
  • Lieven De Lathauwer
چکیده

The canonical polyadic and rank-(Lr , Lr , 1) block term decomposition (CPD and BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD are important tools in psychometrics, chemometrics, neuroscience, and signal processing. We present a decomposition that generalizes these two and develop algorithms for its computation. Among these algorithms are alternating least squares schemes, several general unconstrained optimization techniques, and matrix-free nonlinear least squares methods. In the latter we exploit the structure of the Jacobian’s Gramian to reduce computational and memory cost. Combined with an effective preconditioner, numerical experiments confirm that these methods are among the most efficient and robust currently available for computing the CPD, rank-(Lr , Lr , 1) BTD, and their generalized decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

News Algorithms for tensor decomposition based on a reduced functional

We study the least-squares functional of the canonical polyadic tensor decomposition for third order tensors by eliminating one factor matrix, which leads to a reduced functional. An analysis of the reduced functional leads to several equivalent optimization problem, like a Rayleigh quotient or a projection. These formulations are the basis of several new algorithms: the Centroid Projection met...

متن کامل

Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor o...

متن کامل

Tensor Decompositions with Banded Matrix Factors

The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...

متن کامل

Analysis and Approximation of the Canonical Polyadic Tensor Decomposition

We study the least-squares (LS) functional of the canonical polyadic (CP) tensor decomposition. Our approach is based on the elimination of one factor matrix which results in a reduced functional. The reduced functional is reformulated into a projection framework and into a Rayleigh quotient. An analysis of this functional leads to several conclusions: new sufficient conditions for the existenc...

متن کامل

Block term decomposition for modelling epileptic seizures

Recordings of neural activity, such as EEG, are an inherent mixture of different ongoing brain processes as well as artefacts and are typically characterised by low signal-to-noise ratio. Moreover, EEG datasets are often inherently multidimensional, comprising information in time, along different channels, subjects, trials, etc. Additional information may be conveyed by expanding the signal int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013